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Abstract

Two simpli®ed methods are proposed for determining the internal ionic resistance of a porous electrode using linear voltammetry in the

double layer region. With the 70% current response time t0.7 on linear voltammogram and the independently measured uncompensated

solution resistance Re, the internal ionic resistance of a porous electrode can be calculated using the equation Rp�2.483t0.7/Ctotalÿ2.989Re,

where Ctotal is the total capacitance of the porous electrode and can be deduced from the plateau current on the voltammogram. When Rp is

not much smaller than Re, it is also possible to estimate the ionic resistance according to the curve shape of the linear voltammogram

without knowing Re. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Porous electrodes have been widely used for decades in a

variety of electrochemical techniques, such as batteries, fuel

cells, electrolyses and electrochemical sensors mainly

because of the advantages associated with their highly

developed electrochemical surface areas. In general, how-

ever, not all the electrochemical surface in a porous elec-

trode is uniformly utilized owing to the internal resistance

[1]. In many cases, the porous electrode itself is made of

highly conductive materials and the electronic resistance

may be neglected compared with the ionic resistance. There-

fore, the determination of the ionic resistance is a frequently

encountered task in works involving porous electrodes.

For the electrodes which are thick and strong enough to be

®xed in a frame, the classical four-point measurement is

most straightforward for determining the internal ionic

resistance. However, in many cases this approach is not

realistic because the porous electrode is very thin and

mechanically too weak to be framed, such as the catalytic

layer of gas diffusion electrodes for fuel cells or air batteries.

Similar situation happens to the active layer of lithium ion

batteries where the active material is a thin porous layer

adhered on a solid metal ®lm. Besides, one often prefers in

situ to ex situ measurements because of reliability consi-

derations. In fact, in some practical works even a rough in

situ estimation of the ionic resistance would be very helpful

for optimization of the electrode. It is, therefore, desirable to

develop simple techniques for in situ determining the ionic

resistance. These methods would be particularly useful for

those involved in the practical works of battery research and

development.

In 1990 Takahashi added a reversible redox couple to the

solution and deduced the internal ionic resistance according

to the well-established polarization theory for porous elec-

trodes [2]. In a recent work related to the electrodes for the

proton exchange membrane fuel cells, Boyer and coworkers

inserted an inactive layer, which had the same structure as

the catalytic layer, between the catalytic layer and the

Na®on1 membrane and estimated the ionic resistance of

the catalytic layer according to the changes in polarization

due to the inserted inactive layer [3]. However, these

approaches are not in situ and less convenient.

Early in the 1970s, Austin and Gagnon used a series

expression to describe the current response of a porous

electrode to linear potential scanning in the double layer

region in the presence of uncompensated solution resistance

[4,5]. With independently measured uncompensated resis-

tance Re, they were able to deduce the double layer capa-

citance and the internal ionic resistance by curve ®tting.

Based on the structural parameters of the porous electrode,

the ionic resistance thus obtained was thought to be reason-
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able, but no attempt was made to check with a direct four-

point measurement. Zhou deduced an equation describing

the linear voltammetry of a porous electrode in the double

layer region in the absence of uncompensated ionic resis-

tance but did not apply this equation to determine the

internal ionic resistance though it has the potential [6].

From numerical studies of these equations we found it

possible to replace the tedious computer curve ®tting with

a simple arithmetic calculation. With separately measured

uncompensated solution resistance, the internal resistance of

the porous electrode can be deduced from the 70% current

response time t0.7 using a very simple linear equation. In

favorable circumstances it was found still possible to esti-

mate the internal ionic resistance according to the line shape

of the linear voltammogram without knowing Re. These

developments make the linear voltammetry a very conve-

nient tool for the determination of the ionic resistance in a

porous electrode. In this paper, we ®rst present the results of

numerical studies which serve as the basis for the proposed

methods and then report experimental data to compare the

Rp values obtained using the simpli®ed methods with those

obtained using the four-point measurement.

2. Experimental

In order to test the proposed method described below, a

porous silver disk electrode in alkaline solution (0.5 mol/l

KOH) was used as the model system. The electrode was

made from the silver powder for zinc-silver batteries by

pressing in a mold. The porous silver electrode was a disk

1.30 cm in diameter and 3.24 mm thick. The porosity of the

test electrode was found to be 0.649 according to its weight

and apparent volume. The test electrode was intentionally

made thick so that the response time was relatively long and

the experiment could be easily carried out without the need

for fast response equipment. The test electrode was tightly

sealed in a Te¯on frame and clamped between the two half

cells of the four-point measurement device. Each of the half

cells contains an auxiliary electrode and a Luggin capillary

reaching the test sample.

In the four-point measurements, a current was applied

through the auxiliary electrodes located on the two sides of

the porous silver disk and the potential difference DE

between the two capillaries was recorded as a function of

the current I. The ionic resistance between the two capil-

laries was calculated from the slope R�dE/dI. The uncom-

pensated resistance between the capillary and the silver

electrode Re were obtained according to the sudden potential

change of the test electrode (on an oscilloscope) following a

current step passing through the test electrode and an

auxiliary electrode. The ionic resistance of the porous

electrode was then calculated to be Rp�RÿRe1ÿRe2, where

Re1 and Re2 are the uncompensated resistances between

the test electrode and the capillaries on the two sides,

respectively.

To test the effects of Re on the determination of Rp, the

distance between the capillary and the test electrode was set

at different values. To ensure comparability, the linear

potential scanning measurements were conducted with

exactly the same test electrode and in the same device as

for the four-point measurements. Linear potential scanning

was carried out with a potentiostat and recorded on an x±y

recorder in the potential region from ÿ0.40 to ÿ0.35 V

(versus Ag/Ag2O in the same solution) where the double

layer capacity is constant within experimental error. Before

each potential scanning, the potential was kept at the starting

value for a suf®cient time (about a minute) to reach a

uniform potential distribution within the porous electrode.

3. Numerical analyses of the linear voltammetry for
porous electrodes

3.1. In the absence of uncompensated solution resistance

(Re�0)

The most popular approach to analyze the polarization of

porous electrodes is based on a macroscopically homoge-

neous model. In this model, the porous electrode consists of

two interpenetrated networks, i.e. the ionically conductive

one (the liquid phase) and the electronically conductive one

(the solid phase). The elemental sizes of the electrolyte pores

and solid particles are much smaller than the thickness of the

electrode but the pore diameters are greater than the double

layer thickness. These macroscopically homogeneous elec-

trodes can be characterized by so-called effective parameters

such as effective speci®c resistance r (O cm) and effective

speci®c capacitance (F/cm3). To simplify the relevant equa-

tions, it is assumed in the following sections that the current

in the electrolyte phase reaches the working electrode from a

single side only of the electrode.

When the uncompensated solution resistance Re is neg-

ligible compared with ionic resistance inside the electrode

Rp, the dimensionless linear voltammogram in the double

layer region has been deduced by Zhou [6]:
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b � I

vCLA
(2)

where I is the electrical current (A), v the potential scan rate

(V/s), C the double layer capacity per unit volume (F/cm3), L

and A are the thickness (cm) and apparent area (cm2) of the

porous electrode. rCL2 is a characteristic time for the porous

electrode. b and t/rCL2�T are the dimensionless current and

time, respectively. When T is sufficiently large, b reaches

essentially unity and the current levels off to the plateau
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current IC. The result of numerical calculations is shown in

Fig. 1. From the plateau current IC and scan rate v, the total

capacitance can be readily obtained: Ctotal�CLA�I/v. We

define a dimensionless time Tb�tb/rCL2 for the current

corresponding to b (i.e. a b fraction of the plateau current).

From Fig. 1 the values of T for b�0.9 and 0.7, denoted T0.9

and T0.7, are found to be 0.848 and 0.403, respectively. When

T�2.30, b essentially reaches unity (0.996). With previously

determined value for Ctotal and the value of tb taken from

experimental voltammogram, the ionic resistance can be

calculated: Rp�rL/A�tb/TbCtotal. For example, we may use

the data point of 70% current response (b�0.7) to deduce Rp.

In doing so, we first locate the point on the experimental

linear voltammogram and take the corresponding time t0.7.

From Fig. 1, T0.7 can be found to be 0.403 and then

Rp�t0.7/T0.7Ctotal�t0.7/0.403Ctotal�2.483t0.7/Ctotal. When this

method is to be adopted, it is necessary to check whether the

condition Re�0 is met to a good approximation. The judg-

ment can be made according to the shape of the rising part of

the curve. A simple way for checking is to use a few

representative data points. In practice, we found it conve-

nient to use the time ratio T0.9/T0.5�t0.9/t0.5 which should be

close to 4.312 if Re is negligible. The effects of Re on the

curve shape will be addressed in detail in the next section.

3.2. In the presence of uncompensated solution resistance Re

Austin and Gagnon [4] reported the equations of linear

voltammetry for a porous electrode in the double layer

region in the presence of uncompensated solution resistance:

b � 1ÿ
X1
n�1

exp ÿm2
n

t

rCL2

� �
2c2

�m2
n�c2 � m2

n � c��

( )
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where

c � rL

ARe

� Rp

Re

(3a)

mn tan mn � c (3b)

the mn values are the positive roots of equation

mn tan mn�c. Eq. (3) is a complicated function whose curve

fitting needs rather involved programming and is time

consuming. When c is very small, namely the internal ionic

resistance Rp being negligible compared with the uncom-

pensated solution resistance Re, Eq. (3) reduces to the simple

formula for a circuit consisting of resistance Re and capa-

citance Ctotal(�CLA) connected in series:

b � 1ÿ exp
ÿt

ReCtotal

� �
(4)

In the situation described by Eq. (4), the linear voltammo-

gram contains no information of Rp and, therefore, is not

applicable for Rp determination. On the other extreme where

Re�0, Eq. (4) reduces to

b � 1ÿ 8

p2

X1
n�1

�ÿ1�n
�2n� 1�2
" #

exp
ÿ�2n� 1�2p2t

rCL2
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As proved by our numerical calculations, Eq. (5) is equiva-

lent to Eq. (1).

It is seen from Eq. (3) that the value of c determines the

shape of the current response curve. Conversely, one may

deduce the c value and, in turn, the Rp value from the curve

shape. The effect of c can be best shown with dimensionless

plots. To include the curves for c ranging from 0 to in®nity

and give all the curves in a fully developed version, the c
values are divided into two regions and plotted separately

using two different characteristic times as shown in Fig. 2

(characteristic times rCL2 and ReCLA�ReCtotal for Fig. 2a

and b, respectively). For comparison, the scales of Fig. 2a

and b were sized so that the curves for c�1 in the two ®gures

appear identical. It is seen that the curve shape changes with

c. A simple way to characterize the curve shape is to use the

ratio of the times at different b values. We found the time

ratio t0.9/t0.5�T0.9/T0.5 suitable for the curve shape charac-

terization and will use it in the following sections. Fig. 3

indicates that the change in curve shape mainly takes place

in the region of c values 0.3±30. When c>100, the dimen-

sionless current response curves (b curves) are essentially

identical to that for in®nite c. In these cases, the in¯uence of

Re on the determination of Rp is negligible. Therefore, if t0.9/

t0.5 is found to be close to 4.3 (i.e. c being suf®ciently large)

one can simply use the method described in Section 3.1. On

the other hand, if t0.9/t0.5 is close to 3.32 (corresponding to

c<0.1), Rp will be too small compared with Re to be

extracted with reasonable accuracy. For acceptable results,

c should be no less than 0.1.

3.3. Tbc±c relations

According to the de®nitions of Tb and c, Tbc is an

experimentally accessible value:

Tbc � tb

ReCtotal

(6)

Fig. 1. Dimensionless linear voltammogram of a porous electrode in the

double layer region in the absence of uncompensated solution resistance.
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where tb is directly taken from the linear voltammogram

when the value for b has been chosen; Re and Ctotal are

determined the way described in previous sections. If the

relation between Tbc and c is established, then c and, in

turn, Rp can be deduced from the experimental Tbc. It is

found in numerical studies that the Tbc±c relations for b
values between 0.5 and 0.9 are roughly linear and can be

approximately described with a general formula:

Tbc � ab � bbc (7)

where ab and bb are constants for a fixed b. Multiplying both

sides of Eq. (7) with (rCL2/c) results in

rCL2Tb � abRe � bbrL

A

� �
CLA (8)

or

tb � RpCtotalTb � �abRe � bbRp�Ctotal (8a)

It is interesting that Eq. (8a) appears similar to the formula of

the characteristic time for an equivalent circuit consisting of

two resistors (abRe and bbRp) and a capacitor connected in

series. The approximate linearity of Eq. (7) is shown in

Fig. 4a. A careful check on the Tbc±c relations would find

that they are not strictly linear as proved by the changes of

slope (d(Tbc)/dc) with respect to c (Fig. 4b). Fortunately,

the slope for b�0.7 turns out to be a constant with satisfac-

tory precision over a wide region of c values (0.02±500):

T0:7c � 1:2040� 0:4028c (9)

Substituting Rp�Rec and T0.7c�t0.7/Re Ctotal (Eq. (6)) into

Eq. (9) results in

Rp � 2:483t0:7

Ctotal
ÿ 2:989Re (10)

Fig. 2. Dimensionless linear voltammograms in the presence of uncompensated solution resistance: (a) 1>c>1; (b) 1>c>0.

Fig. 3. Plot of t0.9/t0.5 against log(c).

Fig. 4. Approximate linearity of Tbc vs. c: (a) Tbc vs. c; (b) d(Tbc)/dcvs. c.
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In fact, Eq. (10) was found to well fit the theoretical values

for the two extremes. For Re�0 (c�1), Eq. (10) gives

t0.7�0.4028 RpCtotal which turns out to be in good agreement

with the result of numerical calculation (0.4028RpCtotal for

t0.7) of Eqs. (1) and (5). On the other hand, for the case of Rp

being negligible compared with Re (c�0), Eq. (10) becomes

t0.7�1.2040 ReCtotal, in excellent agreement with Eq. (4)

(1.2040 ReCtotal for t0.7). From the experimental values for

t0.7, Re and Ctotal, the internal ionic resistance Rp can be

readily obtained using Eq. (10).

4. Results and discussion

4.1. Determining Rp with known Re

To test the method developed in the previous section,

linear potential scan was carried out for the same porous

electrode at different Re values. A few of the current

response curves are given in Fig. 5. As expected, the current

rising became slower with increasing Re. The Re values were

separately measured as mentioned above. The plateau cur-

rent was reproducible within �1% and slightly sloped due

probably to residual Faradaic current which was corrected

for as a baseline shift in data processing. From the plateau

current IC�0.280 mA and scan rate v�1.67 mV/s, the total

capacitance Ctotal was found to be 0.168 F.

In Table 1, the t0.7 values were directly read from the

experimental I±t curves. From 10 experimental runs at

different Re values, the Rp values were calculated from

Eq. (10) with an average 10.5�0.3 O, in good agreement

with the value 10.3�0.3 O found by the four-point measure-

ments. Eq. (10) indicates that if c(�Rp/Re) is much smaller

than unity, Rp will be a small difference between two large

numbers and will have fewer effective digits. Usually, c
should be no less than 0.1 in practice. On the contrary, if c is

much larger than unity, the last term in Eq. (10) becomes

only a small correction. When c�100, for example, this

term presents only a correction of 2.4% which could be

neglected for most practical works. The c values in Table 1

range roughly from 1 to 5.5 which are in the proper region

for deducing Rp.

4.2. Estimation of Rp without knowing Re

In the experiments described in Section 4.1, the uncom-

pensated solution resistance Re had been separately mea-

sured as a known parameter. However, in favorable

situations it is still possible to obtain Rp without knowing

Re. Combining Fig. 3 and Eq. (9), a working curve relating

t0.9/t0.5 and T0.7 can be established as shown in Fig. 6. After

taking t0.9 and t0.5 from the experimental linear voltammo-

gram, T0.7 can be readily found from Fig. 6. Finally, Rp can

be calculated:

Rp � t0:7

�T0:7Ctotal� (11)

Table 2 lists the Rp data obtained using Eq. (11) based on

the same measurements as in Table 1. In Table 2, the Re

values are deduced using equation Re�Rp/c where the c
value was found from the experimental t0.9/t0.5 using Fig. 3.

The statistics over the 10 experimental runs gave a Rp value

11.3�0.7 O. The average value is about 10% higher than

that from the four-point measurement and the standard

Fig. 5. Experimentally measured linear voltammograms at scan rate

1.67 mV/s for different uncompensated solution resistances.

Table 1

Deducing Rp from t0.7 and Re

Experimental run 1 2 3 4 5 6 7 8 9 10

Re/O (�0.03) 1.97 2.76 3.54 4.25 5.43 6.10 7.24 8.66 10.35 12.60

t0.7 /s (�0.02) 1.11 1.26 1.45 1.58 1.81 1.98 2.20 2.45 2.78 3.27

Rp /O 10.5 10.3 10.8 10.6 10.4 10.9 10.8 10.2 10.0 10.5

Fig. 6. The working curve of t0.9/t0.5 vs. 1/T0.7.
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deviation is about two times that in the previous section. The

main source of standard deviation is thought to be the low

sensitivity of t0.9/t0.5 to c and, in turn, the high sensitivity of

1/T0.7 to t0.9/t0.5. It is seen from Fig. 6 that an 1% error in t0.9/

t0.5 would cause an error of about 5% in 1/T0.7 in the region

around t0.9/t0.5�4.0. For smaller t0.9/t0.5 values, the situation

would be worse. When t0.9/t0.5 is below 3.4, it will be very

dif®cult to ®nd the correct value for 1/T0.7. On the contrary,

the situation could be considered favorable if t0.9/t0.5 is

above 4. However, it should be noted that the maximum

value for t0.9/t0.5 (corresponding to c�1) is 4.312. If t0.9/t0.5

is found to be markedly larger than the maximum, the data

should be considered not reliable or the macroscopically

homogeneous model is not valid for the particular case

studied.

5. Summary

The internal ionic resistance Rp of a porous electrode can

be deduced from linear voltammogram and independently

measured uncompensated solution resistance Re using a

simple linear equation. For better result, the ratio of Rp/

Re�c should be above 0.1. Under favorable conditions it is

possible to deduce Rp without knowing Re, but the result will

be less accurate. These methods are applicable to systems

satisfying the conditions for the macroscopically homoge-

neous model with a potential region where the double layer

capacitance is constant.
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